Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[diethyl(hydroxy)ammonium] benzene-1,4-dicarboxylate

De-Ming Xie, ${ }^{\text {a }}$ Chun-Xiao Chen, ${ }^{a}$ Hai-Xiang Chen ${ }^{\text {b }}$ and Hai-Bin Wang ${ }^{\text {c }}$

${ }^{\text {a }}$ Research Institute of Materials and Surface Engineering, School of Mechnical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, ${ }^{\mathbf{b}}$ Analytical Center, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China, and ${ }^{\text {c College of Chemical Engineering and }}$ Materials Science, Zhejiang University of Technology, Hangzhou 310018, People's Republic of China
Correspondence e-mail: cchhyy@sina.cn
Received 18 March 2010; accepted 13 July 2010
Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.087 ; w R$ factor $=0.220$; data-to-parameter ratio $=14.8$.

In the centrosymmetric title compound, $2 \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}^{+}$.$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{2-}$, two N, N-diethyl(hydroxy)ammonium cations are linked to a benzene-1,4-dicarboxylate dianion by a combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which can be described in graph-set terminology as $R_{2}^{2}(7)$. The crystal structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to the fomation of a ribbon-like network.

Related literature

For similar supamolecular structures involving benzenedicarboxylic acids, see: Chatterjee et al. (2000); Herbstein \& Kapon (1978); Karpova et al. (2004); Mak \& Xue (2000); Yuge et al. (2006); Zhao et al. (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental

Crystal data
$2 \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{2-} \quad M_{r}=344.40$

Monoclinic, $P 2_{1} / c$
$a=6.507(2) \AA$
$Z=2$
$b=11.478$ (4) \AA
Mo $K \alpha$ radiation
$c=12.649(5) \AA$
$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=97.380(7)^{\circ}{ }^{\circ}$
$T=273 \mathrm{~K}$
$V=936.9(6) \AA^{3}$
$0.37 \times 0.31 \times 0.27 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.954, T_{\text {max }}=0.969$
4737 measured reflections
1653 independent reflections 1460 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.087 \quad 112$ parameters
$w R\left(F^{2}\right)=0.220$
H -atom parameters constrained
$S=1.13$
1653 reflections
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O} 2$	0.82	1.78	$2.576(5)$	164
N1-H1 12.72	$1.925(5)$	164		
C7-H7b $\cdots \mathrm{O}^{\mathrm{i}}$	0.91	0.97	2.42	$3.327(5)$

Symmetry code: (i) $x+1, y, z$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2169).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chatterjee, S., Pedireddi, V. R., Ranganathan, A. \& Rao, C. N. R. (2000). J. Mol. Struct. 520, 107-115.
Herbstein, F. H. \& Kapon, M. (1978). Acta Cryst. B34, 1608-1612.
Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. \& Alekseyev, R. S. (2004). Acta Cryst. E60, o2491-o2492.
Mak, T. C. W. \& Xue, F. (2000). J. Am. Chem. Soc. 122, 9860-9861.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yuge, T., Miyata, M. \& Tohnai, N. (2006). Cryst. Growth Des. 6, 1272-1273.
Zhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. \& Zhang, W.-P. (2007). Acta Cryst. E63, o2728.

supplementary materials

Acta Cryst. (2010). E66, o2074 [doi:10.1107/S1600536810027868]

Bis[diethyl(hydroxy)ammonium] benzene-1,4-dicarboxylate

D.-M. Xie, C.-X. Chen, H.-X. Chen and H.-B. Wang

Comment

Supramolecular aggregate design is an active field of research and in a series of papers various supramolecular structures comprising benzene-dicarboxylic acids have been elucidated (Herbstein et al., 1978; Chatterjee et al., 2000; Karpova et al., 2004; Zhao et al., 2007). Some cases have been reported where the use of terephthalic acid has lead to the fomation of supramolecular architectures through hydrogen bonding (Mak et al., 2000; Yuge et al., 2006). The title compound was synthesized by the reaction of terephthalic acid with N, N-diethylhydroxylammine.

As shown in Fig. 1 two N, N-diethylhydroxylammonium (DTHA) cations are linked to the benzene-1,4-dicarboxylate anion (BDL), which is situated about an inversion center, by a special combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ and $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$, which can be described by graph-set $\mathrm{R}^{2}{ }_{2}(7)$ [Bernstein, et al., 1995].

In the BDL anion the dihedral angle between phenyl ring and carboxylate group is 11.3 (3)/\%. In general the BDLanion is almost coplanar with the mean plane through the C and N -atoms in the DTHA cations. The carboxylate groups are nearly perpendicular with the mean plane through the C and N -atoms of DTHA [dihedral angle of $81.0(3) / \%$].

In the crystal structure a ribbon-like structure (Fig. 2 and Table 1), is fomed via $\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{O} 2^{\mathrm{i}}$ interactions [symmetry $\operatorname{code}(i)=1+x, y, z]$.

Experimental

N, N-diethylhydroxylammine and terephthalic acid, in a molar ratio of 2:1, were mixed and dissolved in sufficient ethanol that by heating to 353 K a clear solution was obtained. The reaction system was then cooled slowly to RT, and crystals of the title compound were formed. They were collected and washed with ethanol.

Refinement

The H -atoms were included in calculated positions and treated as riding atoms: $\mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{~N}-\mathrm{H}=0.91 \AA, \mathrm{C}-\mathrm{H}=0.93$, 0.96 , and $0.97 \AA$ for aromatic, methyl and methylene H -atoms, respectively, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=\mathrm{k} \times \mathrm{U}_{\text {eq }}$ (parent O, N or C atom), where $\mathrm{k}=1.5$ for hydroxyl and methyl H -atoms and $=1.2$ for all others.

Figures

Fig. 1. A view of the molecular structure of the title compound [The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are illustrated by dotted lines].

supplementary materials

Fig. 2. A perspective view, along the c-axis, of the crystal packing of the title compound [The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds nd the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are illustrated by dotted lines; the symmetry code for the atom labeled $\mathrm{O} 2{ }^{\prime}$ is $\left.=\mathrm{x}+1, \mathrm{y}, \mathrm{z}\right]$.

Bis[diethyl(hydroxy)ammonium] benzene-1,4-dicarboxylate

Crystal data

$2 \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{2-}$
$M_{r}=344.40$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.507(2) \AA$
$b=11.478$ (4) \AA
$c=12.649(5) \AA$
$\beta=97.380(7)^{\circ}$
$V=936.9$ (6) \AA^{3}
$Z=2$
$F(000)=372.0$
$D_{\mathrm{x}}=1.221 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2185 reflections
$\theta=2.1-25.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Block, colorless
$0.37 \times 0.31 \times 0.27 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.954, T_{\text {max }}=0.969$
4737 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.087$
$w R\left(F^{2}\right)=0.220$
$S=1.13$

1653 reflections
112 parameters

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0871 P)^{2}+0.9891 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.66 \mathrm{e}^{-3}$

$$
\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.4427(3)$	$0.3065(2)$	$0.0657(2)$	$0.0636(8)$
O2	$0.1752(4)$	$0.2241(2)$	$0.1261(2)$	$0.0682(8)$
C1	$0.2564(5)$	$0.3044(3)$	$0.0788(3)$	$0.0482(8)$
C2	$0.1228(4)$	$0.4052(3)$	$0.0370(2)$	$0.0423(8)$
C3	$-0.0744(5)$	$0.4198(3)$	$0.0657(3)$	$0.0476(8)$
H3A	-0.1258	0.3653	0.1100	0.057^{*}
C4	$0.1945(5)$	$0.4869(3)$	$-0.0298(3)$	$0.0469(8)$
H4	0.3257	0.4784	-0.0505	0.056^{*}
O3	$0.4471(5)$	$0.0641(2)$	$0.1778(3)$	$0.0851(10)$
H3	0.3444	0.1052	0.1629	0.128^{*}
N1	$0.6262(5)$	$0.1284(3)$	$0.1645(2)$	$0.0573(8)$
H1	0.5847	0.1967	0.1320	0.069^{*}
C5	$0.6600(11)$	$0.2447(5)$	$0.3266(4)$	$0.110(2)$
H5A	0.6382	0.3143	0.2846	0.164^{*}
H5B	0.7486	0.2617	0.3914	0.164^{*}
H5C	0.5292	0.2162	0.3433	0.164^{*}
C6	$0.7561(8)$	$0.1574(4)$	$0.2672(3)$	$0.0784(13)$
H6A	0.7786	0.0874	0.3101	0.094^{*}
H6B	0.8901	0.1855	0.2525	0.094^{*}
C7	$0.7465(6)$	$0.0633(4)$	$0.0917(3)$	$0.0660(11)$
H7A	0.6599	0.0520	0.0241	0.079^{*}
H7B	0.8644	0.1102	0.0783	0.079^{*}
C8	$0.8225(8)$	$-0.0519(4)$	$0.1328(4)$	$0.0938(16)$
H8A	0.9352	-0.0411	0.1888	0.141^{*}
H8B	0.8694	-0.0961	0.0761	0.141^{*}
H8C	0.7121	-0.0930	0.1601	0.141^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0377(13)$	$0.0655(17)$	$0.0879(19)$	$0.0015(11)$	$0.0087(12)$	$0.0270(14)$

O2	$0.0510(15)$	$0.0536(15)$	$0.103(2)$	$-0.0012(12)$	$0.0227(14)$	$0.0214(15)$
C1	$0.0434(19)$	$0.0489(19)$	$0.0519(19)$	$-0.0079(15)$	$0.0049(14)$	$-0.0012(15)$
C2	$0.0377(16)$	$0.0466(18)$	$0.0418(16)$	$-0.0111(13)$	$0.0013(13)$	$-0.0047(14)$
C3	$0.0415(17)$	$0.053(2)$	$0.0490(18)$	$-0.0096(15)$	$0.0093(14)$	$0.0067(15)$
C4	$0.0342(16)$	$0.058(2)$	$0.0500(18)$	$-0.0045(14)$	$0.0094(13)$	$0.0012(16)$
O3	$0.0704(18)$	$0.0558(17)$	$0.137(3)$	$0.0022(14)$	$0.0415(19)$	$0.0251(18)$
N1	$0.0621(18)$	$0.0444(16)$	$0.0636(19)$	$-0.0028(14)$	$0.0010(15)$	$0.0095(14)$
C5	$0.167(6)$	$0.094(4)$	$0.070(3)$	$0.034(4)$	$0.024(3)$	$-0.002(3)$
C6	$0.100(3)$	$0.071(3)$	$0.062(2)$	$0.019(2)$	$0.004(2)$	$0.010(2)$
C7	$0.058(2)$	$0.072(3)$	$0.066(2)$	$-0.0090(19)$	$0.0050(18)$	$0.002(2)$
C8	$0.100(4)$	$0.073(3)$	$0.111(4)$	$0.015(3)$	$0.020(3)$	$-0.006(3)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	1.245 (4)
O2- C 1	1.252 (4)
C1-C2	1.502 (5)
C2-C4	1.384 (4)
C2-C3	1.388 (4)
C3-C4 ${ }^{\text {i }}$	1.368 (5)
C3-H3A	0.9300
$\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	1.368 (5)
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
O3-N1	1.408 (4)
O3-H3	0.8200
N1-C7	1.484 (5)
N1-C6	1.494 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	123.8 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.9 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.3 (3)
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$	118.3 (3)
C4-C2-C1	120.8 (3)
C3-C2-C1	120.9 (3)
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	121.0 (3)
$\mathrm{C} 4{ }^{\text {i }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.5
C2-C3-H3A	119.5
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{C} 2$	120.7 (3)
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{H} 4$	119.7
C2-C4-H4	119.7
N1-O3-H3	109.5
O3-N1-C7	108.7 (3)
O3-N1-C6	113.4 (3)
C7-N1-C6	111.6 (3)
O3-N1-H1	107.7
C7-N1-H1	107.7
C6-N1-H1	107.7
C6-C5-H5A	109.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	1095

sup-4

$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$11.2(5)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$-169.9(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-167.8(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$11.1(5)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4^{\mathrm{i}}$	$-0.6(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4^{\mathrm{i}}$	$178.4(3)$
Symmetry codes: $(\mathrm{i})-x,-y+1,-z$.	

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$0.6(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$-178.4(3)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-71.7(5)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$165.2(4)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-62.6(4)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$63.1(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	1.78	$2.576(5)$	164
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1$	0.91	1.72	$2.605(5)$	164
$\mathrm{C} 7 — \mathrm{H} 7 \mathrm{~b} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.97	2.42	$3.327(5)$	156

Symmetry codes: (ii) $x+1, y, z$.

supplementary materials

Fig. 1

Fig. 2

